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1 Motivation

Experiments of heavy ion collisions at RHIC show a quantitative deviation from pertur-

bative QCD predictions of heavy quark jet production [1]. There are several indications

that a deconfined state of matter that behaves as a strongly coupled plasma is formed at

the center of the collisions. For instance, hydrodynamic simulations using a very low vis-

cosity have been quite successful in describing the observed elliptic flow at low transverse

momentum [2]. Another example is the disappearance of back-to-back jets, that could

be understood as the effect of a highly dissipative medium. Further evidence comes from

lattice theory [3], where it was observed that at the energy densities reached at RHIC the

equation of state of QCD is still far from the free gas value.

Some of these observations agree with predictions of AdS/CFT duality [4] that pro-

vides a holographic description of some strongly coupled gauge theories. For instance, the

pressure of the strongly coupled N = 4 super Yang-Mills theory was predicted to be about

75% of the free gas [5], which is similar to the results found in the lattice theory in the

range of energies of RHIC. Another prediction was that the plasma shows a hydrodynamic

behavior with a very small viscosity [6]. In the context of heavy quarks, a classical string

computation in AdS/CFT gives predictions for the drag force [7–9], and there are different
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estimates for the energy loss of a fast particle moving through the medium. The various ap-

proaches involve studying string configurations corresponding to massless quarks [10, 11],

the jet quenching parameter from a dipole source [12] or the correlation functions of charged

currents in the plasma [13]. The behavior of the drag and jet quenching in a non-conformal

theory will be the main interest of this paper.

Both the drag force and the jet quenching have been studied in a large number of

situations [14–40], including some non-conformal theories. As opposed to the shear viscos-

ity, these quantities do not show an universal behavior. Although according to the lattice

results the equation of state of QCD in the RHIC range is not very far from a confor-

mal theory, it is necessary to quantify how the deviation from conformal invariance will

affect the energy loss of the jets. For this, one needs to use a framework that can connect

smoothly with the conformal case. There have been several recent attempts in the context

of AdS/QCD that show an interesting behavior [38–40] , but it is certainly desirable to

study a case where the deformation is fully understood. For this purpose, the N = 2∗

theory [41, 42] is an ideal laboratory. Conformal invariance is explicitly broken by the

introduction of a mass deformation in the N = 4 theory. The ultraviolet fixed point is

the N = 4 theory, so the holographic correspondence is very well understood. The ther-

modynamic analysis [46, 47] shows that even when the equation of state starts deviating

significantly from the conformal case there are no phase transitions. Therefore, one can

tune the mass from zero to quite a large value and study the variation of the observables

of interest.

Although the numerical results are given for the N = 2∗ theory, the analytic results

presented here do not depend on its particular properties, and should be general for a large

class of models that describe scalar relevant deformations of a strongly coupled conformal

theory in four dimensions. One should add that the deformation must have a dual descrip-

tion in terms of a scalar supergravity field, which it is not necessarily true for all of the

possible relevant deformations in the field theory.

The paper is organized as follows. In section 2.1 there is a small review of the main

features of the N = 2∗ holographic dual. In section 2.2 some general properties of the black

hole solutions and the thermodynamics of the N = 2∗ theory are discussed. The choice of

string configurations used to compute the different quantities is explained in section 2.3.

Section 3 contains a derivation of the spatial string tension that will be used as reference

scale. The next sections contain the computation of the drag coefficient and momentum

broadening (section 4), and the jet quenching parameter (section 5). The numerical method

used to calculate the values in the N = 2∗ case is explained in the appendix A. Results

are summarized and discussed in section 6.

2 Preliminaries

2.1 The supergravity dual of N = 2∗

The contents of this section can be found in the references [42–44], but are included here

for completeness. The field content of N = 4 can be grouped in N = 1 superfields as a
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vector multiplet and three chiral superfields with scalar components

Φi = X2i−1 + iX2i, i = 1, 2, 3 . (2.1)

In the N = 2∗ theory, two of the chiral fields Φ1 and Φ2 are grouped in a N = 2 hypermul-

tiplet and a mass is introduced in the Lagrangian. The remaining fields form an N = 2

vector multiplet. The mass is introduced through the following relevant operators:

O2 = tr (−X2
1 − X2

2 − X2
3 − X2

4 + 2X2
5 + 2X2

6 ),

O3 = tr (λ1λ1 + λ2λ2) + (scalar trilinear) + h.c. .
(2.2)

where λi are the fermionic components of the multiplets. This choice of operators corre-

spond to the SO(6) representations 20′ and 10+10, that map to two different scalar fields

in the holographic dual, α and χ. The last can couple to the scalar singlet mass operator,

O1 = tr (X2
1 + X2

2 + X2
3 + X2

4 + X2
5 + X2

6 ) , (2.3)

that is not BPS protected and has no associated supergravity field. The mass term comes

from the combination

O1 −
1

2
O2 =

3

2
tr (X2

1 + X3
2 + X3

3 + X2
4 ) . (2.4)

The dual theory is described by solutions of five-dimensional N = 8 supergravity with

the scalar fields turned on. This is a consistent truncation of type IIB supergravity in ten

dimensions, and it is possible to uplift the five-dimensional solutions to ten dimensions,

although this is far from trivial. In the zero temperature case the five-dimensional metric

can be put in the form

ds2
4,1 = e2A(r)(−dt2 + d~x2) + dr2 . (2.5)

Thanks to supersymmetry, it is possible to obtain the function A(r) and the scalar fields

α(r), χ(r) as solutions of a system of first order differential equations.

dA

dr
= −g

3
W,

dα

dr
=

g

4

∂W

∂α
,

dχ

dr
=

g

4

∂W

∂χ
. (2.6)

where

W = −e−2α/
√

3 − e4α/
√

3

2
cosh(2χ) . (2.7)

is the superpotential and g is the five-dimensional gauge coupling. The value of g sets

the radius of curvature L = 2/g, related to the ’t Hooft coupling in the dual theory via

L4 = g2
YMN(α′)2 = λ(α′)2 .

The zero temperature theory has an interesting structure that in the gauge theory can

be formulated in terms of the Coulomb branch of the moduli space. On the gravity side

the supergravity solution has a singularity at the origin of the space. This singularity is of

the good kind [45] and from an analysis of D-brane and string probes in the geometry, it

is possible to relate it to a particular configuration in the Coulomb branch of the N = 2∗

theory where all dyonic states become massless on a ring (the enhançon) around the origin

– 3 –
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of moduli space [43, 44]. At finite temperature the Coulomb branch is lifted and there is

no enhançon singularity in the geometry.

At non-zero temperature supersymmetry is broken and it is necessary to use the second

order equations of motion [46, 47].

�α =
1

2

∂P
∂α

, �χ =
1

2

∂P
∂χ

. (2.8)

The potential for the scalar fields is

P =
g2

16

[(
∂W

∂α

)2

+

(
∂W

∂χ

)2
]
− g2

3
W 2 . (2.9)

The metric can be written as

ds2
4,1 = e2A(r)

(
−e2B(r)dt2 + d~x2

)
+ dr2 , (2.10)

and the functions A(r) and B(r) can be obtained from the Einstein equations

1

4
Rµν = Tµν − 1

3
gµνT ρ

ρ (2.11)

where

Tµν = ∂µα∂να + ∂µχ∂νχ − 1

2
gµν [∂ρα∂ρα + ∂ρχ∂ρχ + P] . (2.12)

is the energy-momentum tensor of the scalar fields.

From the equations of motion one can deduce the asymptotic behavior of the scalar

fields. As r → ∞

χ = ke−r/L(1 + . . . ), ρ ≡ eα/
√

3 = 1 − 2

3
k2 r

L
e

−2r
L + . . . , (2.13)

where k = mL is the mass of the hypermultiplets. This radial dependence corresponds to

scalar fields with masses

m2
χL2 = −3, m2

αL2 = −4. (2.14)

This matches the relation between the mass of a scalar field and the conformal dimension

of the dual operator, m2
sL

2 = ∆(∆ − 4), with ∆ = 3 for the O3 operator and ∆ = 2 for

the O2 operator. At the horizon r → 0 the scalar fields have a constant value

χ = χ0 + χ1r
2 + . . . , ρ = ρ0 + ρ1r

2 + . . . . (2.15)

As was mentioned before, it is possible to uplift the five-dimensional solutions to a full

ten-dimensional geometry. In the Einstein frame it looks

ds2
10 = Ω̃2ds2

4,1 + ds2
5 , (2.16)

where

ds2
5 =

L2Ω̃2

ρ2

(
c−1dθ2 + ρ6 cos2 θ

(
σ2

1

cX2
+

σ2
2 + σ2

3

X1

)
+ sin2 θ

dφ2

X2

)
(2.17)

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
0
6
8

with the warp factor Ω̃, c and ρ defined as

Ω̃2 =
(cX1X2)

1/4

ρ
, c = cosh(2χ), ρ = eα/

√
3 . (2.18)

The scalar functions are
X1 = cos2 θ + ρ6c sin2 θ ,

X2 = c cos2 θ + ρ6 sin2 θ .
(2.19)

The one-forms σi are the SU(2) left-invariant forms satisfying dσi = ǫijkσj ∧ σk.

For the computation of string solutions, one also has to take into account the dilaton

e−ϕ =
1

2

((
cX1

X2

)1/2

+

(
cX1

X2

)−1/2
)

. (2.20)

The axion and the three and five form fields are also present in the geometry, but they will

not be important for the analysis presented here. This is the case because the components

of the NS flux along the directions of the string probes studied here vanish. In other cases

the situation can be different, an example of this would be the non-relativistic backgrounds

of [48]. This would affect for instance the considerations of section 2.3.

2.2 Black hole properties and thermodynamics

Some general properties will be presented here. For concrete calculations the equations are

solved numerically. Details are explained in the appendix A.

First recall the form of the five-dimensional black hole metric

ds2
4,1 = e2A(r)(−e2B(r)dt2 + dx2) + dr2 . (2.21)

For asymptotically AdS spaces, the behavior as r → ∞ is

A(r) → r

L
+ A0 , (2.22)

and

B(r) → 0 . (2.23)

The constant A0 is set to zero by a rescaling of the spacetime coordinates. It is always possi-

ble to choose a coordinate system where locally the metric component grr = 1, so this form

of the metric is completely general for a geometry that has spatial rotational invariance.

The horizon is at r = 0, where the blackening function e2B vanishes. For a regular

horizon the metric functions have the following expansions

eB(r) = b0
r

L

(
1 + b1

r2

L2
+ . . .

)
, (2.24)

eA(r) = a0

(
1 + a1

r2

L2
+ . . .

)
. (2.25)

The smoothness of the Euclidean solution and the area of the horizon determine the tem-

perature and entropy density

T =
a0b0

2πL
, S =

a3
0

4G5
. (2.26)
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(G5 is the 5d Newton constant). Although in the uplift to the ten dimensional metric (2.16)

the internal space and the conformal factor depend on the scalars, one can show that they

do not affect the values of T or S.1

In AdS5 (N = 4 theory), the values are

a0 =
uH

L
, b0 = 2 , (2.27)

where uH is the horizon radius in Schwarzschild coordinates and b2
0 = 4 is related to

exponent in the blackening function f(u) = 1 − u4
H/u4, that in the AdS space is fixed by

the number of dimensions.

In the general case, the entropy can be cast in a more useful form in terms of the

N = 4 entropy. Using
L3

4G5
=

N2

2π
, (2.28)

the entropy density is

S =
4π2

b3
0

N2T 3 =
8

b3
0

SN=4 . (2.29)

So the ratio 2/b0 controls the deviation from the conformal case.

One of the Einstein equations can be integrated, giving a relation that will be useful

for the computation of the drag coefficient. Notice that for scalar fields that depend only

on the radial coordinate, the combination

giiR00 − g00Rii = 0, i = 1, 2 or 3 , (2.30)

is independent of the scalar fields. This gives the equation

B′′ + (4A′ + B′)B′ = 0 ⇒ ln B′ + 4A + B = const . (2.31)

This formula is true for any Lorentz-invariant deformation involving scalar fields, not only

for the N = 2∗ theory.

These formulas are quite general, but in order to describe the thermodynamic behavior

of the N = 2∗ plasma one has to solve the equations of motion and find the right geometries.

This was done in [46, 47] and later on, hydrodynamic properties of the N = 2∗ theory were

also studied in [49–52]. The free energy was computed numerically up to values m/T ∼ 7.

A good approximation is given by the fit

FN=2∗ ≃ FN=4e
−m/(7T ) (2.32)

For a value m/T ≃ 6, the speed of sound was found to be v2
s ≃ 0.825 v2

CFT, with v2
CFT = 1/3.

This implies that the equation of state of the N = 2∗ plasma is quite close to the conformal

case up to values of the mass m/T ∼ 7. If the bulk viscosity over shear viscosity ratio ζ/η

approximately saturates the bound observed in [51]

ζ

η
≥ 2

(
1

3
− v2

s

)
, (2.33)

1The area of the horizon just gets a factor that is the volume of the undeformed S5.
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then, at m/T ≃ 6, ζ/η ≃ 0.12 is quite small, but starts to be comparable to the shear

viscosity. In the numerical evaluation of quantities, the mass will be taken up to larger

values m/T ∼ 17, so the theory is in the region where deviations from conformality should

be substantial.

2.3 Averaged Wilson loops

The analysis of the energy loss of heavy quarks in the plasma involves the computation

of some Wilson loop configurations. In N = 4 it is possible to use a classical string

configuration in the holographic dual to evaluate the expectation value of a generalized

version of a Wilson loop, involving the gauge and the scalar fields [53]

〈W (C, θ)〉 =
〈
ei

R

C dτ (Aµẋµ+θIXI

√
ẋ2)
〉

. (2.34)

where xµ(τ) parameterizes the contour C of the Wilson loop and the θI I = 1, . . . , 6 are

components of a unit vector in R6, so they parameterize a five-sphere S5. In the holographic

dual the S5 is realized geometrically, and the generalized Wilson loops can be described

using classical string configurations that sit at a point of the S5. In the N = 4 theory the

SO(6) R-symmetry that acts on the S5 is unbroken, so the values of the Wilson loops are

independent of the value of θI .

In the N = 2∗ theory the moduli space is partially lifted by the masses, so the S5 in the

holographic dual is deformed. The SO(6) ≃ SU(4) symmetry is broken to a SU(2) × U(1)

subgroup. In this case one should be careful with the choice of Wilson loop, since the

expectation values now depend on the values of θI . Other situations where this can happen

include the R-charged black holes, as shown in [54]. A possible definition of a Wilson loop

that is independent of the θI ’s is an averaged Wilson loop

〈
W (C)

〉
=

1

V (S5)

∫

S5

dΩ5(θ) 〈W (C, θ)〉 . (2.35)

Where the average is over the parameters θI that define the Wilson loop in the field theory.

This corresponds to an object with zero R-charge, so it is closer to the properties of a Wilson

loop involving only gauge fields. A similar kind of average was considered in [55] for Wilson

lines in the N = 4 theory with dependence on the internal directions, as a way to estimate

the quark-antiquark potential for QCD.

Clearly in the N = 4 theory the averaged Wilson loop has the same expectation value

as (2.34). Although it is possible to find an explicit expression for
〈
W (C)

〉
, one can use a

saddle point approximation instead. For this, one writes the Wilson loop as

〈W (C, θ)〉 = eiS(C,θ) or 〈W (C, θ)〉 = e−S(C,θ) , (2.36)

depending on whether the Wilson loop is timelike or spacelike. The action S(C, θ) computed

in holographic models has a large
√

λ factor, so in the strong coupling limit the integral

over the S5 volume will be dominated by minimal action configurations2

〈
W (C)

〉
≃ 〈W (C, θmin)〉 . (2.37)

2Strictly speaking, for timelike Wilson loops the condition is that the action is extremized, but in the

cases studied here the physically sensible saddle point corresponds to the position on the S5 where the

action is minimized.
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where θmin is the value that minimizes the action. There is actually a full set of values

related by the remaining SU(2) × U(1) symmetry, but as for the N = 4 case, it is enough

to take one representative. Notice that this formula would be valid only as long as the

string configuration is at a fixed point in the compact space or moves along an isometric

direction. That would not be the case if for instance an NS flux induces a force on the

string, as was mentioned in section 2.1. The minimal action configurations at a fixed point

will be the ones used to compute the string tension, drag and jet quenching.

A generalized Wilson loop (2.34) has a holographic description in the semiclassical limit

as a classical string configuration in ten dimensions. The string is a two-dimensional surface

with a boundary at r → ∞ that is the contour of the Wilson loop C. The configuration is

determined by the equations derived from the Nambu-Goto action in the Einstein frame,

SNG =
1

2πα′

∫
d2σL =

1

2πα′

∫
d2σ Ω2√g2, Ω2 ≡ eϕ/2Ω̃2 , (2.38)

where g2 is the pullback of the five-dimensional metric (2.10), ϕ is the dilaton (2.20) and

Ω̃ is the warp factor (2.18). From (2.13), the factor Ω2 → 1 as r → ∞. On the other hand,

when r → 0 the scalar fields tend to a constant (2.15) and the factor Ω2 in the string action

depends on the position of the string in the internal space.

String configurations with minimal action are localized at θ = ±π/2, that corresponds

to the part of the geometry associated to the N = 2 moduli space. In this case the factor

Ω2 is minimized for all values of r,

Ω2 = ρ2

√
2 cosh2(2χ)

1 + cosh2(2χ)
. (2.39)

So there will be a dependence on the value of the scalar fields. In the r → 0 limit, the

factor becomes a constant:

Ω2
0 = ρ2

0

√
2 cosh2(2χ0)

1 + cosh2(2χ0)
. (2.40)

3 Spatial string tension

Spatial Wilson loops in the deconfined phase show an area law behavior when the size of the

Euclidean time is very small compared to the size of the loop. It is interesting to compute

the spatial string tension using holography for two different reasons. In the first place, it is a

physical quantity that one may compare directly with results from lattice computations [3,

56] (see [57] for a comparison with different methods). In a phenomenological application

to the QCD quark-gluon plasma, one could fix the string tensions of lattice QCD and

of the holographic model to be equal and extract the values of other parameters, in the

spirit of previous works, as for example in [8, 19]. The second reason, and the one that

motivates its calculation here, is that it has the same parametric dependence on the ’t

Hooft coupling as the drag force coefficient and the jet quenching, so it is canceled out in

the ratio. In principle one could accomplish the same by taking the ratio with the values of

the conformal theory, but notice that this does not give useful information about intrinsic

– 8 –
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properties of the theory. In the next sections the values of the drag coefficient and jet

quenching parameter will be expressed in terms of the string tension.

A spatial Wilson loop can be described holographically by a classical string configura-

tion ending on the appropriate contour at the boundary. The contour of the Wilson loop

is chosen to be rectangular in the x and y directions. The length in the y direction Ly is

taken to be very large, so it is a good approximation to neglect any dependence on the y

coordinate. The choice of worldsheet coordinates is y = τ and r = σ, and the profile of the

string is determined by a function x(r). The string worldsheet Lagrangian is

L = Ω2eA
√

1 + e2Ax′2 . (3.1)

From this, the following equation of motion is obtained

x′ =
ce−A

√
Ω4e4A − c2

. (3.2)

Choosing the integration constant c = Ω2(r0)e
2A(r0) implies that the string profile ends at

r0. The length in the x direction and the regularized action of the Wilson loop3 are

Lx

2
=

∫ ∞

r0

dr
ce−A

√
Ω4e4A − c2

,

S

2
=

Ly

2πα′

(∫ ∞

r0

dr Ω2eA

[
Ω2e2A

√
Ω4e4A − c2

− 1

]
−
∫ r0

0
dr Ω2eA

)
. (3.3)

The length grows as r0 → 0. In that regime, the contributions to the integrals from

r → ∞ are small, since the integrands decay exponentially and the integrand has a square

root divergence at r0. One can use the approximation eA(r) ≃ eA(r0). Defining Ã(r) =

A(r) − A(r0) and Ω̃ = Ω(r)
Ω(r0) ,

Lx

2
≃ 1

a0

∫ ∞

r0→0
dr

1√
Ω̃4e4Ã(r) − 1

,

S

2
≃ Ω2

0a0Ly

2πα′

∫ ∞

r0→0
dr

1√
Ω̃4e4Ã(r) − 1

. (3.4)

Remember that a0 = eA(0), as defined in (2.25). At large distances Lx ≫ 1/T the Wilson

loop follows an area law

S ∼ Ω2
0

a2
0

2πα′LxLy =

(
2

b0

)2

Ω2
0

π
√

λT 2

2
LxLy ≡ σsLxLy . (3.5)

In terms of the N = 4 theory result, the string tension is

σs

σN=4
=

(
2

b0

)2

Ω2
0 . (3.6)

In figure 1 this approximate formula in the N = 2∗ theory is compared with a direct

evaluation using the string solutions for several values of m/T . The agreement is good

only for small masses, although it captures the right tendency of the string tension to

decrease as the mass increases.
3Obtained by subtracting the straight configuration x = 0.
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Figure 1. Spatial string tension of N = 2∗ theory for different values of the mass deformation.

The dashed line corresponds to the approximate formula (3.6) and the solid line to a numerical

evaluation using the string solution.

4 Drag force and Langevin equation

In the formation of the quark-gluon plasma, soft light quarks and gluons thermalize very

fast but heavy quarks remain out of equilibrium for a relatively much longer time if their

mass is much larger than the temperature M/T ≫ 1. At weak coupling the quarks lose

energy through bremsstrahlung and collision processes, that can be described within the

framework of kinetic theory. The momentum change of the heavy quark may be described

by a Langevin equation. A quark with spatial momentum pi moving through the plasma

experiences a force [58]
dpi

dt
= −ηDpi + ζL

i (t) + ζT
i (t) . (4.1)

This is a phenomenological description where the effect of the medium has been separated

in two parts, the drag ∼ ηD and a stochastic contribution ζT , ζL. The drag force opposes to

the movement of the quark −ηDpi, where ηD is the drag coefficient. The term coming from

random collisions with the components of the plasma ζL
i and ζT

i broadens the momentum

distribution in the longitudinal and transverse directions. Usually the random components

are taken as Gaussian white noise, but in general the momentum transfer coefficients κL

and κT can depend on the momentum

〈
ζL
i (t)ζL

j (t′)
〉

=
pipj

p2
κL(p)δ(t − t′),

〈
ζT
i (t)ζT

j (t′)
〉

=

(
δij −

pipj

p2

)
κT (p)δ(t − t′). (4.2)

In principle, the drag coefficient can also depend on the momentum ηD = ηD(p). The

fluctuation-dissipation theorem relates the zero-momentum values of the drag coefficient

and the momentum transfer κL(0) = κT (0) = κ, giving the Einstein relation

ηD(0) =
κ

2MT
. (4.3)
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The momentum transfer also determines the diffusion of the quark through the plasma.

Consider a quark at rest at t = 0 and x = 0. The mean squared position of the quark at

later times will be

〈xi(t)xj(t)〉 = 2Dtδij , D =
2T 2

κ
, (4.4)

where D is the diffusion coefficient.

At strong coupling there is no well-defined kinetic description of the thermal medium,

so it is not clear that a description in terms of the Langevin equation should work. Re-

markably, in the holographic description of a heavy quark in the N = 4 plasma, a drag

force of the form appearing in (4.1) with a constant drag coefficient was found [7–9]. Later

a computation of the momentum transfer showed that it depends on the momentum and

that the Einstein relation (4.3) holds in the limit of low velocities [59, 60].

4.1 Holographic computation of the drag

A heavy quark moving through the plasma is described by a trailing string configuration

in the black hole background [7–9]. The profile moves at constant velocity v in the x

direction and it is extended from the boundary to the horizon in the radial direction r and

from x = vt to x → −∞ in the spatial direction. Identifying the time t and r with the

worldsheet coordinates, the profile is described by a function

x(r, t) = vt + ξ(r) , (4.5)

and by the position in the internal space in the ten-dimensional geometry. As was argued

in section 2.3, a reasonable choice is to pick a point that maps into the moduli space of the

N = 2 theory. Introducing (4.5) in the Nambu-Goto action, the Lagrangian for ξ(r) is

L = −√−g = −Ω2eA
(
e2B − v2 + e2A+2Bξ′2

)1/2
. (4.6)

The drag force in the x direction is given by the momentum flow along the string.

Labeling px the momentum in the x direction, Gµν the components of the background

metric and gab the components of the induced metric on the worldsheet, the momentum

flow is
dpx

dt
=

1

2πα′
√−gGxxgrr∂rx(r, t) =

1

2πα′√−g
Ω4e4A+2Bξ′ = − πξ

2πα′ . (4.7)

Where πξ is the canonical momentum

πξ = −∂L
∂ξ′

=
Ω2e3A+2Bξ′

(e2B − v2 + e2A+2Bξ′2)1/2
. (4.8)

From this expression one finds the following equation for the profile

ξ′ = πξe
−A−B

√
e2B − v2

Ω4e4A+2B − π2
ξ

. (4.9)

In order to have a profile that can go all the way to the horizon, it is necessary that

numerator and denominator flip sign at the same point. This imposes a condition on the

canonical momentum

π2
ξ = Ω4e4A+2B

∣∣
v2=e2B = v2Ω4e4A

∣∣
v2=e2B . (4.10)
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Using (4.10) in (4.7), one can deduce the value of the drag force. For v > 0, πξ > 0,

dpx

dt
= − πξ

2πα′ = − vΩ2e2A

2πα′

∣∣∣∣
v2=e2B

. (4.11)

The expression (4.11) leads to the known result in the N = 4 theory,

dpx

dt
= −π

√
λ

2
T 2 v√

1 − v2
= −π

√
λ

2
T 2 px

M
≡ −µN=4

px

M
, (4.12)

where a factor of the mass is extracted from the drag coefficient µ ≡ ηDM for convenience.

Notice that µN=4 is independent of the velocity. In the general case this is not true, and

it is interesting to extract the velocity dependence.

In terms of the functions appearing in the metric, the drag coefficient becomes

µ = −M

px

dpx

dt
=

1

2πα′ (1 − e2B)1/2Ω2e2A
∣∣∣
v2=e2B

. (4.13)

At large velocities v → 1, the value of the drag coefficient depends on the asymptotic

behavior of the solution r → ∞. The scalar fields do not affect to the result, since Ω2 → 1.

The leading terms in the metric are

e2B = 1 − µ̃2
1e

−4r/L + . . . , eA = er/L(1 + . . . ) . (4.14)

where the constant µ̃1 corresponds precisely to the value of the drag coefficient up to

α′ factors. One can extract the value of µ̃2
1 using the relation (2.31). Comparing the

r → ∞ (4.14) and r → 0 (2.25) limits, this gives

ln(2µ̃2
1) = ln b0 + 4 ln a0 , (4.15)

so the drag coefficient for ultrarelativistic quarks is

µ2
v→1 =

b0a
4
0

2(2πα′)2
. (4.16)

Contrary to previous claims the drag coefficient is sensitive to the infrared physics even

at large velocities. Technically, the high-velocity drag µ̃2
1 appears in the expansion of the

metric (4.14) as a normalizable term so it has a similar status to an expectation value, it

should be possible to relate it to transport coefficients of the plasma.

At small velocities v → 0, the drag coefficient is determined by the expansions at

r → 0 (2.25)

µ2
v→0 =

Ω4
0a

4
0

(2πα′)2
. (4.17)

The ratio depends on b0 and the value of the scalar fields at the horizon

(
µv→0

µv→1

)2

=
2

b0
Ω4

0 . (4.18)
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Figure 2. (A) Drag coefficient in string tension units as a function of the rapidity η = arctanh v,

for m/T = 0, 2.08, 3.42, 5.00, 6.94, 9.40, 12.58, 16.80 from bottom to top. (B) Ratio between the low

and High velocity drag coefficients, as a function of m/T . The solid line corresponds to the direct

evaluation using the string solution and the dashed line to the formula (4.18).

The drag coefficient can be written in terms of the N = 4 coefficient:

µ2
v→1 =

(2πLT )4

2(2πα′)2b3
0

=

(
2

b0

)3

µ2
N=4 , (4.19)

hence

µ2
v→0 =

(
2

b0

)4

Ω4
0 µ2

N=4 . (4.20)

Using (3.6), the drag coefficient would be

µv→0 = σs, µv→1 =

√
b0

2

1

Ω2
0

σs . (4.21)

For N = 4, this implies that µ = σs, as was pointed out in [65]. However, this relation does

not seem to hold in the non-conformal cases, because of the deviation of the string tension

from the analytic result. The numerical value of the drag coefficient in string tension units

as a function of the velocity for several mass deformations has been plotted in figure 2.

Formula (4.18) is also compared with the numerical results, with very good agreement.

The main effect of breaking conformal invariance is that the drag coefficient depends on

the velocity, in the N = 2∗ theory it is larger at higher velocities. Similar behavior was

observed in other non-conformal theories [15].

4.2 Holographic computation of momentum broadening

In the field theory side, the stochastic forces ζT
i , ζL

i in the Langevin equation (4.1) cor-

respond to operators built with heavy quark fields, so it is natural to identify them with

small fluctuations of the string due to thermal radiation coming from the black hole [59, 60].

Notice that a force has to be applied to the quark to make it move at constant velocity, so

the quark is not in thermal equilibrium with the plasma. However, the state described by

the trailing string is a steady state with a constant momentum flow.
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In the derivation of the momentum transfer, the worldsheet black hole is proposed to be

a holographic description of the Wilson line spanned by the heavy quark, so the steady state

is described effectively as a thermal state of a one-dimensional theory with temperature

Tst. The worldsheet temperature depends on the velocity of the quark and it is in general

different from the black hole temperature. At zero velocity the quark is at equilibrium with

the plasma, so Tst(v = 0) = T . Using a path integral approach, the degrees of freedom

beyond the worldsheet horizon can be integrated out. The effect is to introduce a random

force for the string endpoint at the worldsheet horizon that propagates to the boundary

and introduces the stochastic forces of the Langevin description. This is equivalent to

consider the Hawking radiation in the worldsheet theory. This introduces the picture of an

ensemble of strings with fluctuating velocities. The large time average configuration is the

classical string solution and the mean deviation is related to the magnitude of the random

forces [61–64].

Using this approach, the value of the momentum transfer coefficient can be found from

a Kubo formula involving the retarded Green’s function of fluctuations of the string profile

κa = − lim
ω→0

2Tst

ω
Im G

(a)
R (ω) , a = L, T . (4.22)

Consider small perturbations around the trailing string

x1 = vt + ξ(r) + δx1(t, r) x2 = δx2(t, r), x3 = δx3(t, r) . (4.23)

Expanding to quadratic order, the Lagrangian for the fluctuations is4

L(2) = −Gαβ
T ∂αδx1∂βδx1 −

∑

i=1,2

Gαβ
L ∂αδxi∂βδxi , (4.24)

where

Gαβ
a =

1

2
fa

√
−hhαβ , (4.25)

and

fT = Ω2e2A , (4.26)

fL =
Ω4e4A+2B − π2

ξ

Ω2e2A(e2B − v2)
. (4.27)

The ratio fT/fL for large values of r becomes the right one for the zero temperature theory,

fT = (1− v2)fL. The velocity dependent factor corresponds to the anisotropy between the

transverse and longitudinal fluctuations at short times or large frequencies. However, the

small frequency behavior should be related to values of r close to the worldsheet horizon

rH , determined by e2B = v2. Expanding close to the horizon and using (4.10), one finds

fL(rH) = fT (rH)

(
1 + 2

A′(rH)

B′(rH)
+ 2

Ω′(rH)

Ω(rH)B′(rH)

)
. (4.28)

4There are also first order terms but those are total derivatives, so they do not affect to the equations

of motion and will be ignored here.
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Figure 3. Temperature of the worldsheet black hole as a function of the rapidity η = arctanh v,

for m/T = 0, 1.28, 2.08, 3.42, 5.00, 6.94, 9.40, 12.58, 16.80 from top to bottom.

In the N = 4 theory this gives

fL(rH) =
1

(1 − v2)3/2
, fT (rH) =

1

(1 − v2)1/2
, (4.29)

so the zero temperature anisotropy persists at the worldsheet horizon.

The metric hαβ can be diagonalized5 hαβ = diag (−α, 1/α) with

α =

[
(e2B − v2)(Ω4e4A+2B − π2

ξ )
]1/2

Ω2eA+B
. (4.30)

Close to the horizon, the function α ≃ α0(r − rH) vanishes

α ≃ α0(r − rH) + · · · =

= 2eA(rH )+B(rH )

[
B′(rH)

(
2
Ω′(rH)

Ω(rH)
+ 2A′(rH) + B′(rH)

)]1/2

(r − rH) + · · · . (4.31)

Requiring that the Euclidean solution is regular at the horizon implies that the temperature

of the worldsheet black hole is Tst = α0/(4π). The temperature at v = 0 coincides with the

black hole temperature Tst = T . In the N = 4 theory, the worldsheet temperature has a

simple dependence with the velocity Tst = T/
√

γ. The deviation from the conformal case

has been represented in figure 3.

It is convenient to use a Fourier decomposition of the fluctuations. A Fourier mode

δx = e−iωtϕ(r) obeys the following equation (a = T,L)

ϕ′′
a + (log(αfa))

′ϕ′
a +

ω2

α2
ϕa = 0 . (4.32)

5This is done by changing the time variable t to t = t̃ + g(r), with g′ = −htr/htt. After this change of

variables, the new components h̃αβ of the metric are h̃tt = htt, h̃tr = 0, h̃rr = hrr − h2
tr/htt. In the text

the new variables are relabeled to t̃ → t, h̃ → h.
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In order to compute a retarded correlator, the solution must be ingoing close to the horizon

ϕa = (r − rH)−iω/α0Fa(r) Fa(rH) = const. . (4.33)

One can use a low frequency expansion

F = F (0)
a (r) + ωF (1)

a (r) + · · · . (4.34)

The leading term is just a constant and can be fixed to F
(0)
a (r) = 1. The equation for the

next term can be simplified by choosing Wa = −iF
(1)
a

′

W ′
a + (log(αfa))

′Wa +
1

α0(r − rH)

(
1

r − rH
− (log(αfa))

′
)

= 0 . (4.35)

One can rewrite this as

[αfaWa]
′ − 1

α0

[
αfa

r − rH

]′
= 0 . (4.36)

Then, imposing regularity at the horizon r → rH , the solution is

Wa = − fH
a

αfa
+

1

α0(r − rH)
, (4.37)

where fH
a = fa(rH).

In order to compute the Green’s function a cutoff rΛ ≫ L, rH is introduced and the

normalization of the solutions is fixed at the cutoff Ya(ω, rΛ) = e−iωt, so

Ya(ω, r) = e−iωt ϕa(r)

ϕa(rΛ)
. (4.38)

The retarded Green’s function is proportional to the boundary action as the cutoff is taken

to infinity. To leading order in ω, the result is

G
(a)
R (ω) =

1

2πα′ lim
rΛ→∞

fa

√
−hhrrY ∗

a (ω, rΛ)∂rYa(ω, rΛ) = −iω
fH

a

2πα′ + O(ω2) . (4.39)

Using (4.28) and (4.39) in (4.22), the value of the transverse momentum transfer is

κT = 2γTstµ . (4.40)

The longitudinal momentum transfer can be simplified using that v = eB(rH ) and

∂µ̃

∂v
≡ (∂µ̃/∂r)

(∂eB/∂r)

∣∣∣∣
r=rH

=
µ̃(rH)

v

(
−γ2v2 + 2

Ω′(rH)

Ω(rH)B′(rH)
+ 2

A′(rH)

B′(rH)

)
. (4.41)

The complicated dependence on the derivatives of the functions of the metric is the same

as in (4.28). This allows to write the value of the longitudinal momentum transfer as

κL = 2γ3Tstµ + 2γTstv
∂µ

∂v
. (4.42)

There is an additional term due to the velocity dependence of the drag in the non-conformal

theory, and the velocity dependent factor in the conformal theory is γ3 instead of the factor
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γ found for the transverse momentum transfer. In the following an interpretation for this

difference is given.

Assume that it is possible to describe an ensemble of heavy quarks using a Liouville

equation. The probability density at time t of finding a heavy quark in the position x and

with transverse and longitudinal momenta pT and pL is ρ(x, pT , pL; t).6 The continuity

equation is
∂ρ

∂t
+

∂

∂x
(ẋρ) +

∂

∂pT
(ṗT ρ) +

∂

∂pL
(ṗLρ) = 0 . (4.43)

The trailing string describes a quark moving through a viscous medium and subject to an

external force in the longitudinal direction Fv = γvµ

ṗL = Fv − µ
pL

M
, ṗT = −µ

pT

M
. (4.44)

The effect of the stochastic forces can be taken into account adding to the right-hand side

of (4.43) terms of the form κ
2∂2ρ/∂p2. In the absence of forces Fv = 0 and µ = 0, there

is a homogeneous solution ρ ∼ (κt)−3/2e−p2/(2κt) to (4.43) that describes correctly the

spreading of the quarks due to Brownian motion.

The question is now if there is a static and homogeneous solution to (4.43). This will

mean that the heavy quarks and the plasma are in a steady state configuration with a

constant flux of momentum, introduced in the system by the external force acting on the

quarks. When there is no force the average velocity of the quarks vanish and the system

is at thermal equilibrium. Under these conditions, the equations reduce to

µ
pT

M
ρ +

κT

2

∂ρ

∂pT
= 0 , (4.45)

−γvµ + µ
pL

M
ρ +

κL

2

∂ρ

∂pL
= 0 . (4.46)

There is indeed a solution in the form of a Boltzmann distribution centered at non-zero

longitudinal momentum

ρeq(pT , pL) ∝ exp

(
− p2

T

2MγTst

)
exp

(
− (pL − γvM)2

2Mγ3Tst + 2MTstv∂vµ

)
. (4.47)

Focusing on the conformal case, the factor γ2 can be understood as a consequence of the

underlying Lorentz symmetry. By doing a Fourier transformation, the resulting distribution

in the spatial coordinates has widths

〈
∆x2

T

〉
∼ 1

γTstM
≡ L2,

〈
∆x2

L

〉
∼ 1

γ3TstM
=

1

γ2
L2 . (4.48)

The square roots of the widths 〈∆x2
T,L〉1/2 give the mean length of the distribution along the

transverse and the longitudinal directions in real space, so under a longitudinal boost the

transverse width should not change and the (square root) of the longitudinal width should

suffer the usual Lorentz contraction. If the distribution of the ensemble of heavy quarks

6All these quantities are vectors but arrows are dropped for notational simplicity.
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Figure 4. Anisotropy of the momentum distribution of heavy quarks in the rest

frame of the ensemble as a function of the rapidity η = arctanh v, for m/T =

0, 1.28, 2.08, 3.42, 5.00, 6.94, 9.40, 12.58, 16.80 from bottom to top.

is spherical with mean radius L in the rest frame defined by the average values 〈xT 〉 = 0,

〈xL〉 = vt, then the boost to the rest frame of the plasma will account for the different

γ factors in the longitudinal and transverse widths in (4.48). The possible relation of the

additional γ2 factor in the longitudinal direction with Lorentz invariance was pointed out

in [59] from the analysis of the zero temperature worldsheet Green’s function. Notice that

there is still a dependence of the widths on the modulus of the relative velocity between

the heavy quarks and the plasma, implicit in Tst.

In the non-conformal case, in addition to the Lorentz contraction, the velocity depen-

dence of the drag coefficient affects to the distribution in the longitudinal direction, so

it is not longer spherical in the rest frame of the quark distribution. This is even more

explicit if the drag coefficient is taken as a function of the average longitudinal momentum

PL = γvM . Then, the longitudinal momentum transfer has a rather simple form

κL = 2γ3Tstµ

(
1 +

PL

µ

∂µ

∂PL

)
. (4.49)

A measure of the anisotropy in momentum space as a function of the velocity for different

masses in the N = 2∗ theory can be found in figure 4.

5 Jet quenching

A different estimation of the energy loss of relativistic hadrons in the plasma [66] is based

on a weak coupling calculation of the gluon radiation emitted by a dipole source in the

limit E ≫ pT ≫ T , where pT is the typical transverse momentum of the radiated gluons

and E is the energy of the source. The momentum transfer to the medium q̂, known as

‘jet quenching’ parameter, can be associated to a rectangular adjoint Wilson loop with two

lightlike sides of length L−, related to partons moving at relativistic velocities, and two
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spatial sides of length Lx ≪ L− related to the transverse momentum of the radiated gluons

pT ∼ 1/Lx. In the planar limit, the value of the adjoint Wilson loop can be obtained from

a Wilson loop in the fundamental representation

〈WAdj(C)〉 = |〈W (C)〉|2 , (5.1)

In [12] it was proposed to use the expectation value of the fundamental Wilson loop as a

definition for the momentum transfer q̂ at strong coupling

〈W (C)〉 = e
− 1

8
√

2
q̂L2

xL− , (5.2)

and, using a classical string in the AdS5 black hole, the following result for the N = 4

theory was found

q̂N=4 =
π3/2Γ

(
3
4

)

Γ
(

5
4

)
√

λT 3 . (5.3)

One can see that once the dependence of the coupling and the temperature have been fac-

tored out, the jet quenching differs from the momentum transfer obtained from worldsheet

fluctuations of the trailing string (4.40). The relation between the jet quenching and the

drag will be made explicit below.

The expectation value of the Wilson loop (5.2) can be computed evaluating the classical

action S(C) of a string ending on the contour C at the boundary. The contour C is chosen to

be rectangular in the y− = (t−y)/
√

2 and x directions, with the length in the y− direction

L− very large, so it is possible to neglect any dependence on the y− coordinate. The choice

of coordinates for the associated string is τ = y−, r = σ and the profile is determined by

the function x(r). The Lagrangian is

L =
Ω2eA

√
2

√
1 − e2B

√
1 + e2Ax′2 . (5.4)

From this one can derive the equation of motion

x′ =
ce−A

√
Ω4e4A(1 − e2B) − c2

. (5.5)

This can be simplified by defining a ‘drag coefficient’ function as

µ̃(r) = (1 − e2B(r))1/2Ω(r)2e2A(r) . (5.6)

Notice that µ̃(r) at fixed r coincides with the drag coefficient (4.13) (up to the 2πα′ factor)

at velocity v2 = e2B(r). The radial coordinate is related to the energy scale in the dual

theory, so there is a scale associated to each velocity. The map to a physical scale in the

field theory could be ambiguous, depending on the choice of radial coordinate. A better

option could be to use the energy scale defined by the average transverse kinetic energy

of the heavy quark, using the momentum transfer (4.40) and assuming a non-relativistic

dispersion relation as in (4.47)

〈ET 〉 ≡
〈
p2

T

〉

2M
=

κT

2µ
= γTst . (5.7)
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The string profile ends at a finite value of the radial coordinate r > 0 unless the

integration constant c2 ≤ µ̃2(0) = µ̃2
0. This implies that in the non-conformal case there

are two branches. In the c2 > µ̃0 branch the action of the string grows linearly with the

length Lx in the x direction, while in the c2 < µ̃0 branch it grows quadratically. A similar

behavior has been observed previously [67]. A numerical calculation in the N = 2∗ case

shows that the branch with c2 > µ̃0 has a larger action for a given length, so it is disfavored.

In the following only c2 ≤ µ̃2
0 will be considered.

Notice that x′ 6= ∞ at the horizon. In principle this looks like the solution is irregular

or should be continued beyond the horizon. However, it is possible to see that the solution

corresponds to a regular string touching the horizon once Schwarzchild coordinates are

used. The Gaussian radial coordinate r is related to the Schwarzschild radial coordinate u

as dr = du/
√

g(u), where g(uH) = 0 at the horizon uH > 0. Then,

x′ =
dx

dr
=
√

g(u)
dx

du
. (5.8)

If x′ is constant at the horizon the derivative with respect to the Schwarzschild coordinate

diverges dx
du → ∞, and this gives the right condition for a regular solution touching the

horizon.

With this choice, the length in the x direction and the regularized action of the

string are

Lx

2
=

∫ ∞

0
dr

e−Ac√
µ̃2 − c2

,

S

2
=

L−
2
√

2πα′

∫ ∞

0
dr e−Aµ̃

[
µ̃√

µ̃2 − c2
− 1

]
. (5.9)

The jet quenching is obtained from the Lx → 0 behavior, this corresponds to the c → 0

limit in the integrals.

Lx

2
≃ c

∫ ∞

0
dr

e−A

µ̃
,

S

2
≃ c2L−

4
√

2πα′

∫ ∞

0
dr

e−A

µ̃
. (5.10)

So the (inverse of) the jet quenching coefficient is

q̂−1 = πα′
∫ ∞

0
dr

e−A

µ̃
. (5.11)

Taking into account the relation between the radial coordinate and the energy scale in

the dual theory, the formula above could be interpreted as an average of the drag over

all scales, showing a relation between the drag and the jet quenching. Using the relation

between the scale and the velocity v = eB(r), (5.11) could also be interpreted as an average

over velocities, although the explicit form is more complicated. The value of q̂ in units of

the spatial string tension and temperature are plotted in figure 5 for different masses in
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Figure 5. Jet quenching in σsT units as a function of m/T .

the N = 2∗ theory. One can see that the jet quenching grows with m/T , the change is

about ∼ 50% for m/T ∼ 17. The numerical value at m/T = 0 q̂ ≃ 4.794T σs is in good

agreement with the analytical result (5.3)

q̂N=4 =
2
√

πΓ
(

3
4

)

Γ
(

5
4

) T σs ≃ 4.793T σs . (5.12)

6 Discussion of the results

In [68] some experimental observables for heavy quarks were proposed such that it would

be possible to make comparisons with perturbative QCD predictions. A matter of concern

is how the comparison with ‘real world’ physics should be made. There are two parameters

that enter explicitly in both the drag and the jet quenching, the ’t Hooft coupling and the

temperature.7 There have been different proposals to fix their value, for instance by fixing

some physical quantity in both theories, like the energy density or the diffusion coefficient

e.g. [8, 19]. However, different choices of the observables used to do the matching will lead

to different quantitative results. Besides, it is difficult to quantify the value of m/T that

would lead to the best comparison with QCD. A rough estimation of the deviation from

conformal invariance that corresponds to QCD would be to compare the speed of sound

or the equation of state of both theories.8 The speed of sound is the most straightforward,

although it would be desirable to use the equation of state as well to check its robustness.

Using the values obtained in the lattice [3] and in the N = 2∗ theory [47], one finds that

for T ∼ 1.5 − 2 Tc the value of m/T is in the approximate range 3 . m/T . 6. The

uncertainty of this comparison motivates the study of quantities within the same theory,

as has been done for the transport coefficients of the plasma, the shear to entropy density

ratio being the most obvious example.

7In the N = 2∗ theory the mass deformation is an additional parameter that does not enter explicitly

but that modifies the value.
8I would like to thank Krishna Rajagopal and Hong Liu for suggesting these comparisons.
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The expression (4.16) shows that the ultrarelativistic drag coefficient is sensitive to

the infrared physics, and that it should be related to transport coefficients of the plasma

obtained from the energy momentum tensor. One can also see from the formulas (3.6)

and (4.18) that a smaller spatial string tension in the non-conformal theory implies a

relatively larger drag at high velocities and vice versa. A relation between the jet quenching

and the drag coefficient is given in section 5, in the formula (5.11) one can see that the

value of the jet quenching is an average of the drag coefficient over all scales. Therefore,

their values are correlated as should be expected.

The numerical results for the N = 2∗ theory presented in figures 2 and 5 show that

the energy loss is larger in string tension units than in the non-conformal case, and grows

as the mass deformation becomes more important. For the range of masses studied here

0 ≤ m/T . 17, the jet quenching changes up to ∼ 50%. The drag coefficient can be more

than twice as large as the conformal value at high velocities.

In addition to the drag coefficient, the momentum broadening of heavy quarks [59, 60]

was studied in section 4.2. The interpretation of the original results is much less clear in this

case, since the values that were obtained did not fit with the expectations from a Langevin

description of the dynamics of heavy quarks at thermal equilibrium with the plasma. A

recent work [63], gives a possible interpretation in terms of energy loss through non-thermal

radiation processes. The transverse and longitudinal momentum transfer coefficients are

found to be

κT = 2γTstµ, κL = 2γ3Tstµ

(
1 +

PL

µ

∂µ

∂PL

)
. (6.1)

where PL is the average longitudinal momentum of the heavy quark. It is argued that these

formulas are compatible with steady state configurations of quarks subject to an external

force and moving through a relativistic viscous medium. The additional γ2 factor in κL

relative to κT is argued to be due to Lorentz contraction in the longitudinal direction,

under the assumption that the dynamics of heavy quarks can be described with a Liouville

equation, at least as a first approximation.

In the conformal case this implies that the distribution in momentum will be spherical

in the rest frame of the quark ensemble, but in the non-conformal case there is an anisotropy.

It is surprising that the anisotropy of the system does not introduce an anisotropy in the

distribution in the conformal case. It would be interesting to understand whether this

can be derived from conformal invariance or if it is a characteristic of the holographic

computation. It is also possible that, even in a first approximation, the dynamics of

the heavy quarks are described by something more complicated than a simple Liouville

equation, in such a way that the simple relation of the γ2 factor to a Lorentz transformation

does not hold.

In the N = 2∗ theory a broadening of the longitudinal momentum is observed (figure 4),

related to the growth of the drag coefficient at larger velocities. A broadening of the

momentum distribution in the longitudinal direction has also been observed in perturbative

calculations of quarks moving through an anisotropic plasma [69]. This seems to be the

right qualitative behavior that is consistent with the observed distribution of jets in the
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plasma. It would be interesting to do a comparison with the broadening predicted by

holographic models.
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A Numerical method

The numerical calculations are made following the conventions of [46, 47]. The Einstein

equation (2.11) together with the equations of motion for the scalar fields (2.8) form a

system of second order ODEs with four independent equations. The radius of curvature is

fixed to L = 2 to make the gauged supergravity coupling unity. The leading terms in the

asymptotic expansion of the scalar fields as r → ∞ are

χ ≃ χ∞e−r/2 + · · · ,
α√
3
≃ −ρ∞re−r + · · · (A.1)

From (2.13), solutions with N = 2 supersymmetry should satisfy the condition

∣∣∣∣
χ2
∞

3ρ∞
− 1

∣∣∣∣ = 0 (A.2)

The asymptotic behavior of the metric functions should be the same for all solutions. From

the holographic dual perspective this means that they flow to the same ultraviolet fixed

point. Comparing to the usual AdS5 black hole, as r → ∞,

eA(r) → er/2, eB(r) → 1. (A.3)

This fixes completely the boundary conditions at infinity for a fixed value of the mass.

Regularity of the solution at the horizon imposes additional constraints as

r → 0, namely

eB(r) ≃ b0r + · · · , A′(0) = 0, α′(0) = 0, χ′(0) = 0 . (A.4)

It will be convenient to extract the non-analytic behavior of the function B(r) as

B(r) = 4b(r) − 4A(r) + log(b0r), b′(0) = 0 . (A.5)

It is actually easier to implement these conditions at the horizon and shoot toward the

boundary, this is the approach used here. The conditions (A.3) can be imposed by shifting

the functions A(r) and B(r) afterwards. The condition (A.2) is used as a criterion to keep
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the solution as the space of initial values χ(0) = χ0 and α(0) = α0 is explored.9 In the

numerical solutions, the value of the supersymmetric condition is always kept under 10−2.

With this condition, the numerical solutions have a small relative mass difference between

fermions and bosons ∣∣∣∣
mb − mf

mb

∣∣∣∣ . 0.005 . (A.6)

The shooting is done in Mathematica using a set of six first order differential equations

and a second order differential equation. The choice is inspired by the equations of the su-

persymmetric flow (2.6). Following those, the deviation from extremality is parameterized

by three functions a(r), c(r) and b1(r) that vanish as the non-extremal flow approaches the

supersymmetric one when r → ∞,

α′ =
1

4

∂W

∂α
+ a, χ′ =

1

4

∂W

∂α
+ c, b′ =

W

3
+ b1, (A.7)

where W is the superpotential (2.7). The Einstein equations and the equations of motion

for the scalar fields give

ra′ + a

(
1 + 4rb1 −

4

3
rW +

1

4
r
∂2W

∂α2

)
+

1

4

∂W

∂α
+ rb1

∂W

∂α
+ rc

1

4

∂2W

∂α∂χ
= 0 , (A.8)

rc′ + c

(
1 + 4rb1 −

4

3
rW +

1

4
r
∂2W

∂χ2

)
+

1

4

∂W

∂χ
+ rb1

∂W

∂χ
+ ra

1

4

∂2W

∂α∂χ
= 0 , (A.9)

rb′1 + b1

(
2 + 4rb1 −

8

3
rW

)
− 2

3
W − 1

3
rc

∂W

∂χ
− 1

3
ra

∂W

∂α
= 0 . (A.10)

Finally, there is a second order equation that can be solved once the solutions to the first

order system are known

rA′′ + A′ − 2b′ + 4rA′b′ + 4rb′2 − rb′1 +
1

3
r

(
∂W

∂χ
χ′ +

∂W

∂α
α′
)

= 0 . (A.11)

The boundary values at r = 0 of the extra functions are fixed by the requirement

of regularity

a(0) = −1

4

∂W

∂α

∣∣∣∣
α=α0,χ=χ0

, c(0) = −1

4

∂W

∂χ

∣∣∣∣
α=α0,χ=χ0

, b1(0) =
W

3

∣∣∣∣
α=α0,χ=χ0

. (A.12)

There are only two more boundary conditions that need to be fixed

b(0) = 0, A(0) = 0 . (A.13)

This choice implies that the solutions will correspond to different temperatures.

9I would like to thank Steve Paik for providing a set of initial values that helped very much for this

analysis.
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